Cambridge Advanced

Learner Guide

International AS & A Level

Cambridge

Chemistry Cambridge International AS & A Level

9701

© Cambridge International Examinations 2015 Version 2.1 Updated: 16.08.16

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a Centre.

Contents

How to use the table Test yourself Physical chemistry: Atoms, molecules and stoichiometry Physical chemistry: Chemical bonding Physical chemistry: Chemical bonding Physical chemistry: Chemical bonding Physical chemistry: Electrochemistry Physical chemistry: Electrochemistry Physical chemistry: Reaction kinetics Inorganic chemistry: Reaction kinetics Inorganic chemistry: Group 17 Inorganic chemistry: An introduction to the chemistry of transition elements Inorganic chemistry: Nitrogen and sulfur Organic chemistry and analysis: Hydrocarbons Organic chemistry and analysis: Hydrocarbons Organic chemistry and analysis: Carbonyl compounds Organic chemistry and analysis: Carbonyl compounds Organic chemistry and analysis: Nitrogen compounds Organic chemistry and analysis: Nitrogen compounds	Section 4: What you need to know	Section 3: What will be tested?	How to use this advice General advice Paper 1 Multiple Choice Paper 2 AS Level Structured Questions Paper 3 Advanced Practical Skills Paper 4 A Level Structured Questions Paper 5 Planning, Analysis and Evaluation	About the examination About the papers Section 2: Examination advice.	Section 1: How will you be tested? Section 2: Examination advice Section 3: What will be tested? Section 4: What you need to know 5	How to use this guide
---	----------------------------------	---------------------------------	--	---	---	-----------------------

https://xtremepape.rs/

Organic chemistry and analysis: Polymerisation Organic chemistry and analysis: Analytical techniques Organic chemistry and analysis: Organic synthesis

How to use this guide

three options for their learners: Level or Cambridge International Advanced (A) Level Chemistry examinations. Schools choose one of the The guide describes what you need to know about your Cambridge International Advanced Subsidiary (AS)

- leading to the full A Level. To take all A Level components (AS Level and remainder of A Level) in the same examination session
- examination session. If you do well enough you then have to take the final part of the exam in a later examination session, leading to the full A Level. To follow a staged assessment route to the A Level by taking the AS Level qualification in an earlier
- To take the AS qualification only.

examinations officer will know. has been chosen by your school, college or centre. If you do not know, then your chemistry teacher and It is important when using this revision checklist that you know which one of the above three options

areas you have covered you revise, by using ticks in Section 4 ('What you need to know') to check what you know and which topic papers. It will explain what examiners are looking for in the answers you write. It can also be used to help This guide will help you to plan your revision programme for the five theory and practical examination

The guide contains the following sections:

Section 1: How will you be tested?

that are available This section will give you information about the different types of theory and practical examination papers

Section 2: Examination advice

some are based on the common mistakes that learners make in exams. This section gives you advice to help you do as well as you can. Some of the ideas are general advice and

Section 3: What will be tested?

This section describes the areas of knowledge, understanding and skills that you will be tested on.

Section 4: What you need to know

This shows the syllabus content for AS and the full A Level in a simple way so that you can check:

- the topics you need to know about
- how the theory differs from the practical syllabus
- details about each topic in the syllabus
- how much of the syllabus you have covered

How to use this guide

Section 1: How will you be tested?

About the examination

AS Level candidates enter for Papers 1, 2 and 3

Candidates who already have the AS Level and are taking the full A Level enter for Papers 4 and σ

A Level candidates taking the full A Level at the end of the course enter for Papers 1, 2, 3, 4 and 5

About the papers

The table below gives you outline information about all the examination papers

ហ	4	ω	Ν	<u>ب</u>	Paper
Planning, Analysis and Evaluation	A Level Structured Questions	Advanced Practical Skills	AS Level Structured Questions	Multiple Choice	Type of paper
1 hour 15 minutes	2 hours	2 hours	1 hour 15 minutes	1 hour	Duration
30	100	40	60	40	Marks
		23%	46%	31%	Weigh AS
12%	38%	12%	23%	15%	ting (%) A2

Paper 1 Multiple Choice (1 hour) (40 marks)

of the syllabus in Section 3.2 Subject content that are not in bold type. 30 items will be of the direct choice answers on an answer grid provided. You will need to answer all the questions. type and 10 of the multiple completion type. All questions will include 4 responses. You will write your 40 multiple choice questions based on the AS Level syllabus content. The AS content consists of the parts

Paper 2 AS Level Structured Questions (1 hour 15 minutes) (60 marks)

question paper. You will need to answer all the questions. A variable number of structured questions based on the AS content. You will write your answers on the

Paper 3 Advanced Practical Skills (2 hours) (40 marks)

be restricted by the subject content. The scope of the practical test is indicated in the Practical Assessment questions section of the syllabus. You will write your answers on the question paper. You will need to answer all the This will feature two or three experiments drawn from different areas of chemistry. The examiners will not

Paper 4 A Level Structured Questions (2 hours) (100 marks)

content that are in bold type. A variable number of structured questions based on the A Level syllabus, but which may contain material from the AS syllabus. The A Level content consists of the parts of the syllabus in Section 3.2 Subject

You will write your answers on the question paper. You will need to answer all the questions

Paper 5 Planning, Analysis and Evaluation (1 hour 15 minutes) (30 marks)

write your answers on the question paper. You will need to answer all the questions. of planning, analysis and evaluation. The examiners will not be restricted by the subject content. You will This paper will consist of a variable number of questions of variable mark value based on the practical skills

Section 2: Examination advice

How to use this advice

subheadings to help you when you revise a particular topic This advice highlights some common mistakes made by candidates. It is collected under various

General advice

- Misreading a question costs you marks if you could have answered the question that was there Read the question carefully. Yes, we know you've been told this before, but it is still a common issue
- definitions you have been taught, such as first ionisation energy and standard electrode potential. There will be many marks on each paper, so make sure you score them all. For example, learn all the Don't concentrate your revising on 'difficult' material if it means you leave out the 'easier' material.
- studied. Don't give up on these questions! If you know your chemistry you will be able to score all the marks by applying what you know to these substances. There may be questions on the paper that could involve elements or compounds you may not have
- Write clearly. If your answer to a question is "alkene" the person marking your papers must be able to be certain that you have written "alkene": if it looks at all like "alkane" you will not get the mark.
- it looks like you might have written "0.96 moles" or "0.40 moles" you will not get the mark. Write numbers clearly. If your answer to a question is "0.46 moles" make sure the numbers are clear: if
- answer into the space between lines of writing. Make sure you identify your new answer clearly, e.g. clearly in an available space. Don't try to write over the top of your previous answer, or fit the new If you have to make a correction, cross out what you have written and write down your new answer "continuation of Q4 (b)"
- might be sufficient for part (a) but it won't be for part (b). the question. For example, if part (a) has one mark and part (b) has two marks, then a single statement On papers that give scope for longer answers, look at how many marks are available for each part of
- In the example above, look out in part (b) for the possibility of writing a statement and an explanation
- ٠ Find it out and learn it. If this doesn't work go over it with your teacher and/or your classmates cover the whole syllabus very thoroughly. If you don't know something, don't rely on it not coming up You are going to take several chemistry exam papers lasting a total of many hours. These papers will
- ٠ Examples of this situation include: final answer. Don't give up on it, or leave blanks. You may be able to score the majority of the marks is very important when you find you are unable to work all the way through a longer question to the Method marks contribute a lot to your total on many papers. Write out each step of your method! This
- 0 work out that 45,000 dm³ of gas are released from a test tube reaction! If you write out your method At the end of a four-mark calculation on gas volume you get an answer you know is wrong, e.g. you mark it might be important. in full you may still score three marks if you have only made one mistake. Even if you only score one
- 0 deductions are from each separate piece of information in the question. Many answers like this can still score four or five marks, even without the final structure structure that fits all the information. Answer the question anyway, stating in full what your question to deduce the full structural formula of a compound. You find you cannot produce a You are answering a five-mark organic question in which you have to use information from the

 $\overline{}$

- chloride dissolves in water" answer. For example, a question asks "describe and explain the processes involved when sodium are changing an answer or part of an answer, only cross out your first answer if it contradicts your new Don't cross out an answer, or part of an answer, simply because you are not satisfied with it. If you
- 0 this to "sodium chloride is an ionic compound", you must cross out your first answer because these you might start by writing "Sodium chloride is a covalent compound". If you then want to change two answers contradict each other.
- 0 alternatively, you might start by writing "Sodium chloride dissolves in water to give a solution of sodium chloride. Don't cross out your original statement. It may score you one or more marks. pH 7", and then you decide this is not relevant, and you need to start by considering the bonding in
- final answer is not close enough to the correct answer. round off after each step of the calculation. If you do this, rounding errors can add together so that your Round off calculations to the correct number of significant figures at the end of the calculation. Do not
- guess correctly, you score a mark. guess. If you leave the answer blank, you get no mark. If you guess wrongly, you get no mark. If you bromide or iodide ions are present, but you can't remember which, you have nothing to lose if you added to an unknown solution a yellow precipitate forms". If you know that this means that either Be prepared to guess intelligently. For example, a question says that "when silver nitrate solution is
- think of what you know about ammonia (NH_3). group. If, for example, you get a question about the shape or acid/base behaviour of phosphine (PH $_3$), You may be able to answer the question by applying your knowledge of other elements in the same If a question asks you about an inorganic compound you are not familiar with, look at your periodic table
- . aldehyde (-CHO) group, think of what you know about ethanal (CH₃CHO). groups in the compound. You may be able to answer the question by applying your knowledge of how If a question asks you about an organic compound you are not familiar with, look at the functional these functional groups behave. If, for example, you get a question about an organic compound with an

Paper 1 Multiple Choice

- Answer every question.
- paper. Go back to this question first if you have time at the end of the exam If you are not sure about an answer, make a note of the question number on the front of your question
- if you can eliminate one or two of the choices. answer. Alternatively, if you do this and find that you still have to guess, you are more likely to get it right answer with a tick, a question mark, or a cross. Use this to decide which of the four answers is the best Questions 1–30 have four answers. If you cannot spot the correct answer with certainty, mark each
- . not answer the question as propanone molecules are also polar. than propanone?" and one of the four choices is: "water molecules are polar". This is true, but it does true but do not answer the question, e.g. a question asks, "Why does water have a higher melting point Some questions will state a fact, and then ask for an explanation of the fact. Beware of answers that are
- decisions while looking at later statements. or cross by it. Do the same for the other statements. This way you don't have to remember your earlier statement is true or not. When you have decided whether or not the first statement is true, put a tick Questions 31–40 have four statements. To answer these questions you have to decide whether each
- . your answer. If a question involves a calculation write out your method. This will save you time if you have to check
- Any **bold type** in a question is there to draw your attention to something important

cream and yellow respectively. terms are, e.g. colours of silver chloride, silver bromide and silver iodide should be described as white and textbooks (e.g. AS Level and A Level Chemistry by Ratcliff et al) to find out what these accepted

•

compound has an alkene functional group and an aldehyde functional group" you will score two marks

to a hydrogen atom then the specific name for the functional group is "aldehyde". If you answer "The group is "alkene". Many compounds have carbonyl groups, but if the carbonyl group is directly bonded compounds have double bonds, but if it is a C=C double bond then the specific name for the functiona If you answer "The compound has a double bond and a carbonyl group" you will score no marks. Many question worth two marks you have to name the functional groups in the compound $H_2C=CHCH_2CHO$ Give answers that are as specific and as precise as you are able. For example, in an organic chemistry

sure you use the accepted terms to describe colour changes that will be seen. Use examiners' reports Many questions will ask you to state the observations that will be made during an experiment. Make .

they are drawn as skeletal formulae

draw skeletal formulae as well as displayed formulae. It is often easier to spot two identical structures if writing answers that are simply redrawings of the same structure! You may find it easier here if you Organic chemistry questions often ask for the isomers of a given compound to be drawn. Beware of

•

 ΔH^{Θ}_{f} of NaHCO₃.

 ΔH^{\oplus} of the decomposition 2NaHCO₃ \rightarrow Na₂CO₃ + CO₂ + H₂O make sure you use twice the value of the given to work it out are per mole of substance. For example, if you are using ΔH^{e}_{f} values to calculate the If you are calculating a ΔH° value in a thermochemistry question, don't forget that the ΔH° values you are factor, for example the structure and bonding of the elements, it is unlikely to score marks.

elements in a group affect the reactivity of the elements. If your answer concentrates on some other for. An example of this is a question that asks you to explain how the electronic configurations of the If a question asks for an explanation of a particular type you provide the answer that is being asked the explanation. There will probably be only one mark for the observation or statement.

include the explanation. Look at the mark allocation to help you to decide how much detail is required in Look out for questions that ask for an observation or statement and an explanation, and make sure you If state symbols are asked for in an equation, put them in. Read the question, and then answer it!

learning of a definition until you are word perfect - you will lose marks otherwise

You must learn definitions exactly, e.g. definitions of energy changes. Don't be satisfied with your

Use the space on the paper as a rough guide to the length of answer necessary. If there are five lines

ರ

write in, a one-line answer is unlikely to be enough.

•

•

•

•

Paper 2

AS

Level Structured Questions

Paper 3 Advanced Practical Skills

- place the question tells you to record results or observations in a certain place you must record them in that instructions on the paper so that you do the correct experiments and record the correct observations. If As with all exams it is essential that you read practical exam papers very carefully. You must follow the
- convert between cm³ and dm³ is an essential part of this Make sure you are well practised in handling all of the equations relating to titrations. Being able to
- exercises until your teacher agrees you have them right. questions on past papers. Get a set of results for each question of this sort and repeat the graphical Make sure you are well practised in the graphical techniques that have been necessary to answer

- . Don't forget to record titration results in a suitable format, giving initial and final burette readings, and recording volumes to 0.05cm³, not 0.1cm³ or 0.01cm³.
- results than this unless the question specifically says so You need to get two titration results that are within 0.10 cm³ of each other. You don't need more accurate
- Have a mental checklist to use when titrating:
- No air bubble in the tip of the burette
- No air bubbles anywhere in the pipette
- 0 The bottom of the meniscus just touches the graduation on the pipette
- 0 The colour change you're looking for at the end-point should be caused by a single drop from the burette
- ٠ short of time be no marks given for the repeats, you may lose marks for failing to follow instructions, and you may run If a question tells you that repeated readings should not be taken, don't repeat the readings! There will
- slight, dense, soluble, insoluble, excess, gelatinous, and effervescence. Make sure you are well practised in the correct vocabulary for recording observations, e.g. precipitate
- If you are asked to record observations do so in as much detail as possible. If a solution is colourless, or a precipitate is white, say so. Don't just describe it as a "solution" or a "precipitate".
- . difference between an instant or sudden change and a gradual change. If you have to add one solution to another, looking for observations, add it slowly. You need to notice the
- intermediate stages, describe each of these stages. If a change is instant or sudden, say so. If a change is gradual, say so. If the change goes through

Paper 4 A Level Structured Questions

- ٠ strict with yourself when you are practising them. As with Paper 2 there will be definitions to learn for Paper 4. Make sure you know them exactly. Be
- energy then you are unlikely to get the right answer to the question. bond is +242 kJmol⁻¹. Does this energy value refer to making bonds or breaking them? Does this energy term refer to one mole of CL-Cl bonds or one mole of Cl atoms? If you don't know the definition of bond do a calculation that involves CI-CI bonds. The data in the question says the bond energy for the CI-CI Some definitions will be essential in order to do calculations correctly. For example, you may have to
- If a question requires the use of data from the Data Booklet, write down the data you have selected There may be a mark for choosing the correct data from the booklet.
- . This paper will ask you to write balanced chemical equations. Practise this skill.
- pick up marks balanced chemical equation. Write an equation, including state symbols. This gives you extra chances to If a question gives details of a reaction and asks you to explain it there will probably be a mark for a
- 0 There may be a mark for naming a certain product; if you forget to name it but write it in an equation you will get the mark
- 0 with (g) after it you will get the mark. There may be a mark for saying a gas is given off; if you forget to state this but write it in an equation
- 0 There may be a mark for saying a precipitate forms; if you forget to state this but write it in an decomposition of the carbonates of Group 2 metals. If you write the equation MgCO₃(s) \rightarrow MgO(s) equation with (s) after it you may get the mark. For example, a question asks you about the therma

for saying that the products include carbon dioxide gas + CO₂(g) you will pick up any marks available for saying that the products include a metal oxide, or

- bonding – metallic, ionic, or covalent. Your answer must be two words, chosen from this list of five. need to use two words. One word describes the structure – giant or simple. One word describes the Be definite and specific. If a question asks you to describe the structure and bonding of a substance you
- . you will give yourself the best chance you can. you need to know. If you learn these reactions and practise writing the balanced chemical equations However you can make them much easier for yourself by learning all of the reactions the syllabus says
- . checklist in your memory for writing mechanisms: them and make sure you know which reactions go by which mechanism. Learn the equations! Have a You are very likely to have to show your knowledge of at least one organic reaction mechanism. Practise
- Definitions electrophile and nucleophile
- Which bonds have to be labelled with dipoles (δ + and δ -)
- 0 a bond pair, or the delocalised electrons in a benzene ring, and the arrowhead should point towards the atom, ion or molecule that the electron pair is going to Curly arrows represent the movement of an electron pair, so the arrow should start on a lone pair, 0
- answering as many sample questions as you can. You may be asked to use your skills to interpret mass spectra and NMR spectra. Practice these skills by
- . important not to panic If a question seems to be about an area of chemistry which you know little or nothing about, it is
- . strategy that you could use when tackling such questions. Let us suppose that a question seems to be in an area that is unfamiliar to you. The following is
- 0 on Read carefully through the stem of the question and try to identify the areas of the course it is bas ed
- Think back to what you studied in this topic.
- Look carefully at any information/data provided in the question.
- 0 provided. Read each sub-question carefully and see how it links to what you know, and any of the data
- 0 specific points covered in lessons Remember these questions more often test your ability to apply what you know, not to recall
- 0 when answering one or more parts of the question Remember - any data provided is there for a reason. You will need to use it, or to select from it,

Paper 5 Planning, Analysis and Evaluation

- The planning exercise will require you to define the problem and then describe a practical method
- If you are asked to make a prediction, and to justify the prediction, make sure you do so
- having to come to you for clarification Your practical method should be detailed. Somebody else should be able to follow your method without
- Make sure any drawings of apparatus are done clearly and simply
- If the results obtained will then have to be processed, explain how this will be done
- The paper may include a <u>data handling</u> question.
- This will involve some simple maths. Check your maths, including the choice of the number of
- significant figures. If you are in doubt, work to 3 significant figures
- (eg mass) and the units (eg g). The numbering of the axes should make plotting straightforward - if 0.1 g You may have to plot a graph. Number and label the axes clearly. The labels should include the quantity

 \exists

is less straightforward – and the points to be plotted should use more than half the graph paper in each covers ten small squares then plotting is straightforward, if 0.25 g covers ten small squares then plotting direction.

- You will have to evaluate an experiment and the set of results that was obtained.
- • Identify any results that don't fit the general trend, suggesting an explanation of how they arose
- Consider the quality of the method.
- ٠ Comment on the apparatus chosen – was it suitable?
- ٠ hypothesis. You may be asked what conclusion can be drawn, and whether or not the data supports a given

Section 3: What will be tested?

Assessment objectives

We take account of the following in your answer papers.

What this examines: Remembering facts and applying these fasituations. How you extract information and rearrang sensible pattern. How you carry out calcumake predictions. You also need to reflect validity and reliability of that information or possible sources of error. Planning and carrying out experiments and
--

information on assessment objectives. The assessment objectives (AOs) listed below reflect those parts of the aims of the syllabus which will be assessed. This is a brief description and your teacher will be able to provide you with more detailed

AO1 Knowledge with understanding

Demonstrate with relation to understanding:

scientific phenomena, facts, laws, definitions, concepts, theories

scientific vocabulary, terminology, conventions (including symbols, quantities and units)

scientific instruments and apparatus, including techniques of operation and aspects of safety

scientific quantities and their determination

scientific and technological applications with their social, economic and environmental implications

present reasoned explanations for phenomena, patterns and relationships

AO2 Handling, applying and evaluating information

locate, select, organise and present information from a variety of sources presentation) to: You should be able (in words or by using symbolic, graphical and numerical forms of

handle information, distinguishing the relevant from the extraneous

manipulate numerical and other data and translate information from one form to another

analyse and evaluate information so as to identify patterns, report trends and draw inferences

construct arguments to support hypotheses or to justify a course of action

apply knowledge, including principles, to new situations

evaluate information and hypotheses

AO3 Experimental skills and investigations

You should be able to:

plan experiments and investigations

collect, record and present observations, measurements and estimates

analyse and interpret data to reach conclusions

evaluate methods and quality of data and suggest improvements

Weighting of assessment objectives

on individual papers may vary slightly from year to year. This table gives a general idea of the allocation of marks to the assessment objectives, however the balance

Assessment Objective	Weighting (%)	On which papers?
A01	42	1, 2 and 4
AO2	35	1, 2 and 4
AO3	23	3 and 5

Data Booklet

will be supplied as needed. the Data Booklet have been made for 2016. The new booklet will be used for the first time in the March syllabus. Copies of the booklet can be ordered from Cambridge Publications. Please note that changes to 2016 examination series (for India only) and Centres will be supplied with copies at this time. Further copies A Data Booklet is available for use in Papers 1, 2 and 4. The booklet is reprinted towards the back of the

Introduction

columns: examinations. These are arranged into themes, each being divided into topic areas. These topics are then subdivided into specific things you should be able to do. These topics will be placed into one of two What you need to know is presented in a table, which describes the things you may be tested on in the

- The first column is for learners studying AS Level.
- The second column is additional material for learners studying the full A Level.

which material to use, you should ask your teacher for advice. chemistry. If you are studying A Level chemistry then both columns are needed. If you are unsure about You need only refer to the first column (Learners studying AS Level) if you are studying AS Level

How to use the table

appropriate space in the checklist column. covered. You can also use it as a revision aid. When you have a good knowledge of a topic, you tick the You can use the table throughout your chemistry course to check the theme and topic areas you have

The themes in the table are:

Organic chemistry: Organic synthesis
Organic chemistry: Analytical techniques
Organic chemistry: Polymerisation
Organic chemistry: Nitrogen compounds
Organic chemistry: Carboxylic acids and derivatives
Organic chemistry: Carbonyl compounds
Organic chemistry: Hydroxy compounds
Organic chemistry: Halogen derivatives
Organic chemistry: Hydrocarbons
Organic chemistry: Introductory topics

Test yourself

Test yourself as follows:

- cover up the details with a piece of paper
- try to remember the details
- when you have remembered the details correctly, put a tick in the appropriate space in the checklist column.

If you use a pencil to tick the space you can retest yourself whenever you want by simply rubbing out the ticks. If you are using the table to check the topics you have covered, you can put a tick in the topic column next to the appropriate bullet point.

The **Comment** column can be used:

- . to add further information about the details for each bullet point
- to note relevant page numbers from your textbook
- . to add learning aids e.g. OIL RIG (for oxidation is loss (of electrons) and reduction is gain (of electrons))
- . to highlight areas of difficulty/things which you need to ask your teacher about.

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learr studying the full A Leve	
			Things you should be able to do	Comment	Things you should be able to do	Comment
1	Atoms, molecules and stoichiometry	Relative masses of atoms and molecules	Define and use the terms <i>relative atomic,</i> <i>isotopic, molecular and</i> <i>formula masses</i> , based on the carbon-12 scale			
		The mole; the Avogadro constant	Define and use the term <i>mole</i> in terms of the Avogadro constant			
		The determination of relative atomic masses, A _r ,	Analysis of mass spectra in terms of isotopic abundances	Knowledge of the working of the mass spectrometer is not required		
			Calculate the relative atomic mass of an element given the relative abundances of its isotopes, or its mass spectrum			

Physical chemistry: Atoms, molecules and stoichiometry

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learn studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
1	Atoms, molecules and stoichiometry	The calculation of empirical and molecular formulae	Define and use the terms <i>empirical</i> and <i>molecular formulae</i>	The term <i>relative formula mass</i> will be used for all compounds including ionic		
			Calculate empirical and molecular formulae, using combustion data or composition by mass			
		Reacting masses and volumes (of solutions and gases)	Write and construct balanced equations			

Physical chemistry: Atoms, molecules and stoichiometry

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
1	Atoms, molecules and stoichiometry		Perform calculations, including use of the mole concept, involving: (i) reacting masses (from formulae and equations) (ii) volumes of gases (e.g. in the burning of hydrocarbons) (iii) volumes and concentrations of solutions	Work out answers to the number of significant figures asked for in the question. If a number of significant figures is not asked for then the number of significant figures in the <u>least</u> accurate piece of data should be used.		
			Deduce stoichiometric relationships from calculations			

Physical chemistry: Atoms, molecules and stoichiometry

Section 4: What you need to know

Physical chemistry: Atomic structure

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment	
2	Atomic structure	Particles in the atom	Identify and describe protons, neutrons and electrons in terms of their relative charges and relative masses				
			Deduce the behaviour of beams of protons, neutrons and electrons in electric fields				
			Describe the distribution of mass and charge within an atom				
			Deduce the numbers of protons, neutrons and electrons present in both atoms and ions given proton and nucleon numbers and charge				

Physical chemistry: Atomic structure

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment	
2	Atomic structure	The nucleus of the atom	Describe the contribution of protons and neutrons to atomic nuclei in terms of proton number and nucleon number				
			Distinguish between isotopes on the basis of different numbers of neutrons present				
			Recognise and use the symbolism $_y^{\times}A$ for isotopes, where $^{\times}$ is the nucleon number and $_y$ is the proton number				
		Electrons: energy levels, atomic orbitals, ionisation energy, electron affinity	Describe the number and relative energies of the s, p and d orbitals for the principal quantum numbers 1, 2 and 3 and also the 4s and 4p orbitals				

Physical chemistry: Atomic structure

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material f full	or learners studying the A Level
			Things you should be able to do	Comment	Things you should be able to do	Comment
2	Atomic structure		Describe and sketch the shapes of s and p orbitals			
			Use 1s ² 2s ² 2p ⁶ etc notation to state the electronic configuration of atoms and ions given the proton number and charge			
			Explain and use the term ionisation energy		Explain and use the term electron affinity	
			Explain the factors influencing the ionisation energies of elements			
			Explain the trends in ionisation energies across a Period and down a Group of the Periodic Table			
			Deduce the electronic configurations of elements from successive ionisation energy data			
			Interpret successive ionisation energy data of an element in terms of the position of that element within the Periodic Table			

This topic introduces the different ways by which chemical bonding occurs and the effect this can have on physical properties.

Syllabus	Syllabus Theme Topic		Learners studying	AS Level	
section			Things you should be able to do	Comment	Comment
3	Chemical bonding	lonic bonding	Describe ionic bonding, as in sodium chloride, magnesium oxide and calcium fluoride, including the use of 'dot-and-cross' diagrams		
		Covalent bonding and co-ordinate (dative covalent) bonding including shapes of simple molecules	Describe, including the use of 'dot-and-cross' diagrams, covalent bonding. For example as in hydrogen, oxygen, chlorine, hydrogen chloride, carbon dioxide, methane and ethene		
			Describe, including the use of 'dot-and-cross' diagrams, co-ordinate (dative covalent) bonding. For example as in the formation of the ammonium ion and in the Al_2Cl_6 molecule		

Syllabus	Theme	Theme Topic	Learners studying	Learners studying AS Level		
section			Things you should be able to do	Comment		Comment
3	Chemical bonding		Explain the shapes of and bond angles in molecules by using the qualitative model of electron-pair repulsion (including lone pairs). Use simple examples such as: BF_3 (trigonal); CO_2 (linear); CH_4 (tetrahedral); NH_3 (pyramidal); H_2O (non-linear); SF_6 (octahedral): PF_5 (trigonal bipyramidal) to illustrate your answers			
			Describe covalent bonding in terms of orbital overlap, giving σ and π bonds			

Syllabus section	Theme	Торіс	Learners studying	J AS Level	<u>Additional</u> material fo studying the full <i>i</i>	or learners A Level
			Things you should be able to do	Comment	Things you should be able to do	Comment
3	Chemical bonding		Describe the concept of hybridisation to form sp, sp ² , and sp ³ orbitals			
			Predict the shapes of and bond angles in molecules similar to those stated above			
		Intermolecular forces, electronegativity and bond properties	Explain the terms <i>bond</i> <i>energy, bond length</i> and <i>bond polarity</i> and use them to compare the reactivities of covalent bonds			

Syllabus section	Theme	Theme Topic	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
3	Chemical bonding		Describe hydrogen bonding, using ammonia and water as simple examples of molecules containing N-H and O-H groups			
			Describe intermolecular forces (van der Waals' forces), based on permanent and induced dipoles, as in CHCI ₃ (I); Br ₂ (I) and the liquid Group 18 elements			
			Apply the concept of electronegativity to explain bond polarity, dipole moments and the behaviour of oxides with water			

Syllabus section	Theme	Торіс	Learners studying AS	Level	<u>Additional</u> material for learn the full A Level	iers studying
			Things you should be able to do	Comment	Things you should be able to do	Comment
3	Chemical bonding	Metallic bonding	Describe metallic bonding in terms of a lattice of positive ions surrounded by delocalised electrons			
		Bonding and physical properties	Describe, interpret and predict the effect of different types of bonding (ionic bonding; covalent bonding; hydrogen bonding; other intermolecular interactions; metallic bonding) on the physical properties of substances			
			Deduce the type of bonding present from given information			
			Show understanding of chemical reactions in terms of energy transfers associated with the breaking and making of chemical bonds			

Section 4: What you need to know

Physical chemistry: States of matter

The study of the particles in solids, liquids and gases and the interactions between them is important in understanding the physical properties of substances.

Syllabus section	Theme	Theme Topic	Learners studying AS Level		<u>Additional</u> material f studying the full	or learners A Level
			Things you should be able to do	Comment	Things you should be able to do	Comment
4	States of matter	The gaseous state: ideal and real gases and $pV = nRT$	State the basic assumptions of the kinetic theory as applied to an ideal gas			
			Explain qualitatively in terms of intermolecular forces and molecular size the conditions necessary for a gas to approach ideal behaviour			
			Explain qualitatively in terms of intermolecular forces and molecular size the limitations of ideality at very high pressures and very low temperatures			
			State and use the general gas equation $pV = nRT$ in calculations, including the determination of M_r			
		The liquid state	Describe, using a kinetic- molecular model, the liquid state; melting; vaporisation and vapour pressure			

Physical chemistry: States of matter

Syllabus Section	Theme	eme Topic	Learners studying AS Level		<u>Additional</u> material for lea the full A Lev	arners studying vel
		Things you should be able to do	Comment	Things you should be able to do	Comment	
4	States of matter	The solid state: lattice structures	Describe, in simple terms, the lattice structure of a crystalline solid which is: (i) ionic, as in sodium chloride, magnesium oxide (ii) simple molecular, as in iodine and the fullerene allotropes of carbon (C_{60} and nanotubes only) (iii) giant molecular, as in silicon(IV) oxide and the graphite, diamond and graphene allotropes of carbon (iv) hydrogen-bonded, as in ice (v) metallic, as in copper			

Physical chemistry: States of matter

Syllabus T Section	Theme	eme Topic	Learners studying AS Level		<u>Additional</u> material for lea the full A Lev	rners studying el
			Things you should be able to do	Comment	Things you should be able to do	Comment
4	States of matter		Discuss the finite nature of materials as resources and the importance of recycling processes			
			Outline the importance of hydrogen bonding to the physical properties of substances, including ice and water (for example, boiling and melting points, viscosity and surface tension)			
			Suggest from quoted physical data the type of structure and bonding present in a substance			

Syllabus Theme T Section		Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
5	Chemical energetics	Enthalpy change, ΔΗ	Explain that chemical reactions are accompanied by energy changes, principally in the form of heat energy; the energy changes can be exothermic (ΔH negative) or endothermic (ΔH positive)			
			Explain and use the terms: enthalpy change of reaction and standard conditions, with particular reference to: formation; combustion; hydration; solution; neutralisation; atomisation			
			Explain and use the term: <i>bond</i> <i>energy</i> (Δ <i>H</i> positive, i.e. bond breaking)		Explain and use the terms: lattice energy (ΔH negative, i.e. gaseous ions to solid lattice)	
			Calculate enthalpy changes from appropriate experimental results, including the use of the relationship enthalpy change ΔH = $-mc\Delta T$		Explain, in qualitative terms, the effect of ionic charge and of ionic radius on the numerical magnitude of a lattice energy	

Physical chemistry: Chemical energetics

Syllabus Section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learr the full A Level	ners studying
			Things you should be able to do	Comment	Things you should be able to do	Comment
5	Chemical energetics	Hess' Law, including Born- Haber cycles	Apply Hess' Law to construct simple energy cycles, and carry out calculations involving such cycles and relevant energy terms, with particular reference to determining enthalpy changes that cannot be found by direct experiment, e.g. an enthalpy change of formation from enthalpy changes of combustion		Apply Hess' Law to construct simple energy cycles, and carry out calculations involving such cycles and relevant energy terms, with particular reference to the formation of a simple ionic solid and of its aqueous solution	
			Apply Hess' Law to construct simple energy cycles, and carry out calculations involving such cycles and relevant energy terms, with particular reference to average bond energies		Apply Hess' Law to construct simple energy cycles, and carry out calculations involving such cycles and relevant energy terms, with particular reference to Born-Haber cycles (including ionisation energy and electron affinity)	
			Construct and interpret a reaction pathway diagram, in terms of the enthalpy change of the reaction and of the activation energy			

Physical chemistry: Chemical energetics

Syl Sec	Syllabus Section	Theme	Торіс	Learners studying AS	S Level	<u>Additional</u> material for learr the full A Level	ers studying		
				Things you should be able to do	Comment	Things you should be able to do	Comment		
5	5 Chemical energetics	Chemical energetics	Entropy change, ∆S [⊕]			explain that entropy is a measure of the 'disorder' of a system, and that a system becomes more stable when its energy is spread out in a more disordered state			
								explain the entropy changes that occur: (i) during a change in state e.g. (s) \rightarrow (I); (I) \rightarrow (g); (s) \rightarrow (aq); (ii) during a temperature change (iii) during a reaction in which there is a change in the number of gaseous molecules	
						predict whether the entropy change for a given process is positive or negative			
					calculate the entropy change for a reaction, ΔS° , given the standard entropies, S° , of the reactants and products				

Physical chemistry: Chemical energetics

ω

Syllabus Section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
5	Chemical energetics	Gibbs free energy, ΔG°			define standard Gibbs free energy change of reaction by means of the equation $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$	
					calculate ΔG° for a reaction using the equation $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$	
					state whether a reaction or process will be spontaneous by using the sign of $\Delta G^{ \Theta}$	
					predict the effect of temperature change on the spontaneity of a reaction, given standard enthalpy and entropy changes	
Physical chemistry: Electrochemistry

This topic illustrates the relationship between electricity and chemical changes. Chemical reactions can be investigated by looking at electrode potentials.

Syllabus Section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
6	Electrochemistry	Redox processes: electron	Calculate oxidation numbers of elements in compounds and ions			
		transfer and changes in oxidation number (oxidation state)	Describe and explain redox processes in terms of electron transfer and changes in oxidation number			
			Use changes in oxidation numbers to help balance chemical equations.			

Syllabus Section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
6	Electrochemistry	Standard electrode potentials E ^e : standard cell potentials E ^e _{cell} and the Nernst equation			Define the terms: (i) <i>standard electrode</i> <i>(redox) potential</i> (ii) <i>standard cell potential</i>	
					Describe the standard hydrogen electrode	
					Describe methods used to measure the standard electrode potentials of: (i) metals or non-metals in contact with their ions in aqueous solution (ii) ions of the same element in different oxidation states	

Physical chemistry: Electrochemistry

Syllabus Section	Theme	Торіс	Learners studying	g AS Level	<u>Additional</u> material for learn A Level	ers studying the full
			Things you should be able to do	Comment	Things you should be able to do	Comment
6	Electrochemistry	Standard electrode potentials <i>E</i> ^e : standard cell potentials <i>E</i> and the Nernst equation			Calculate a standard cell potential by combining two standard electrode potentials	
					Use standard cell potentials to explain/deduce the direction of electron flow in a simple cell	
					Use standard cell potentials to predict the feasibility of a reaction	
					Deduce from E° values the relative reactivity of elements of Group 17 (the halogens) chlorine, bromine and iodine, as oxidising agents	See content on relative reactivity of halogens as oxidising agents in Electrochemistry (Section 6), Standard electrode potentials
					Construct redox equations using the relevant half- equations	
					Predict qualitatively how the value of an electrode potential varies with the concentration of the aqueous ion	

Cambridge International AS and A Level Chemistry 9701

Syllabus Section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
6	Electrochemistry				Use the Nernst equation, e.g. $E = E^{\ominus} + (0.059/z)$ log [oxidised species] / [reduced species] to predict quantitatively how the value of an electrode potential varies with the concentrations of the aqueous ions; examples include Cu(s) + $2e^{-} \rightleftharpoons Cu^{2*}(aq), Fe^{3*}(aq) + e^{-} \rightleftharpoons$ $Fe^{2*}(aq), Cl_2(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq)$	
		Batteries and fuel cells			State the possible advantages of developing other types of cell, e.g. the H_2/O_2 fuel cell and the nickel-metal hydride and lithium-ion rechargeable batteries	

Physical chemistry: Electrochemistry

Syllabus Section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the ful A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
6	Electrochemistry	Electrolysis			Predict the identity of the substance liberated during electrolysis from the state of electrolyte (molten or aqueous), position in the redox series (electrode potential) and concentration	
					State and apply the relationship, F = Le, between the Faraday constant, the Avogadro constant and the charge on the electron	
					Calculate: (i) the quantity of charge passed during electrolysis (ii) the mass and/or volume of substance liberated during electrolysis, including those in the electrolysis of H ₂ SO ₄ (aq); Na ₂ SO ₄ (aq)	
					Describe the determination of a value of the Avogadro constant by an electrolytic method	

39

This topic illustrates that many chemical reactions are reversible and involve an equilibrium process. The consideration of the many factors that can affect an equilibrium is an important aspect of physical chemistry.

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment	
7	Equilibria	Reversible reactions	Explain, in terms of rates of the forward and reverse reactions, what is meant by a <i>reversible</i> <i>reaction</i>				
		Dynamic equilibrium	Explain, in terms of rates of the forward and reverse reactions, what is meant by a <i>dynamic</i> <i>equilibrium</i>				
		Factors affecting chemical equilibria	State Le Chatelier's Principle and apply it to deduce the qualitative effects of changes in temperature, concentration or pressure, on a system at equilibrium				

	Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
				Things you should be able to do	Comment	Things you should be able to do	Comment
	7	Equilibria		State whether changes in concentration, pressure, temperature or the presence of a catalyst, affect the value of the equilibrium constant for a reaction			
			Equilibrium constants	Deduce expressions for equilibrium constants in terms of concentrations, $K_{\rm c}$, and partial pressures, $K_{\rm p}$	Treatment of the relationship between K_p and K_c is not required		
				Calculate the values of equilibrium constants in terms of concentrations or partial pressures from appropriate data			

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learn the full A Level	ers studying
			Things you should be able to do	Comment	Things you should be able to do	Comment
7	Equilibria		Calculate the quantities present at equilibrium, given appropriate data	Such calculations will not require the solving of quadratic equations		
		The Haber process	Describe and explain the conditions used in the Haber process			
		The Contact process	Describe and explain the conditions used in the Contact process			
		lonic equilibria	Show understanding of, and use, the Bronsted- Lowry theory of acids and bases, including the use of the acid-I, base-II concept			
			Explain qualitatively the differences in behaviour between strong and weak acids and bases in terms of the extent of dissociation		Explain the terms pH, K_{a} , p K_{a} and K_{w} and use in calculations	

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment	
7	Equilibria				Calculate [H ⁺ (aq)] and pH values for strong and weak acids and strong bases		
					Explain the choice of suitable indicators for acid-base titrations, given appropriate data		
					Describe the changes in pH during acid-base titrations and explain these changes in terms of the strengths of the acids and bases		

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
7	Equilibria	Buffer solutions			Explain how buffer solutions control pH	
					Describe and explain their uses, including the role of HCO ₃ ⁻ ion in controlling pH in blood	
					Calculate the pH of buffer solutions, given appropriate data	
		Solubility product			Show understanding of, and use, the concept of solubility product, $K_{\rm sp}$	
					Calculate <i>K</i> _{sp} from concentrations and vice versa	
		The common ion effect			Show understanding of the common ion effect	
		Partition coefficients			State what is meant by partition coefficient; calculate and use a partition coefficient for a system in which the solute is in the same molecular state in the two solvents	

Physical chemistry: Reaction kinetics

The investigation of the factors that affect the rate of a chemical reaction is important in the study of physical chemistry. The temperature and the addition of a catalyst can both affect the progression of a chemical reaction.

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
8	Reaction kinetics	Terminology	Explain and use the term rate of reaction		Explain and use the terms: rate equation; order of reaction; rate constant; half-life of a reaction; rate- determining step	
		Collision theory	Explain qualitatively, in terms of collisions, the effect of concentration changes on the rate of a reaction			
		Rate constant			Calculate a rate constant using the initial rates method	
		Effect of temperature on reaction rates and rate constants; the concept of activation energy	Explain and use the term <i>activation energy,</i> including reference to the Boltzmann distribution			

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
8	Reaction kinetics		Explain qualitatively, in terms of the Boltzmann distribution and the collision frequency, the effect of temperature change on the rate of a reaction		Explain qualitatively the effect of temperature change on a rate constant and hence the rate of a reaction	
		Homogeneous and heterogeneous catalysts including enzymes	Explain and use the term catalysis			
			Explain that catalysts can be homogenous or heterogeneous			
			Explain that, in the presence of a catalyst, a reaction has a different mechanism, i.e. one of lower activation energy			

Syllabus Theme section		Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
8	Reaction kinetics		Interpret this catalytic effect in terms of the Boltzmann distribution			
			Describe enzymes as biological catalysts (proteins) which may have specificity			
		Rate equations			Construct and use rate equations of the form rate = k[A] ^m [B] ⁿ	Limited to simple cases of single step reactions and multi- step processes with a rate- determining step for which <i>m</i> and <i>n</i> are 0, 1 or 2
		Order of reaction			Deduce the order of a reaction, or the rate equation for a reaction by the initial rates method	
					Deduce the order of a reaction, or the rate equation for a reaction by the half-life method	

47

	Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level		
				Things you should be able to do	Comment	Things you should be able to do	Comment	
	8	Reaction kinetics				Deduce, for zero- and first-order reactions, the order of reaction, or the rate equation for a reaction from concentration-time graphs		
						Calculate an initial rate using concentration data	Integrated forms of rate are not required	
						Show understanding that the half-life of a first-order reaction is independent of concentration		
						Use the half-life of a first-order reaction in calculations		

Physical chemistry: Reaction kinetics

Syllabus section	Theme	Theme Topic	Learners studying <i>I</i>	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment	
8	Reaction kinetics				For a multip-step reaction, suggest a reaction mechanism that is consistent with the rate equation and the equation for the overall reaction		
					For a multi-step reaction, predict the order that would result from a given reaction mechanism (and vice versa)		
					Devise a suitable experimental technique for studying the rate of a reaction, from given information		
		Characteristics and modes of action in homogeneous and heterogeneous catalysis			Outline the catalytic role of iron in the Haber process		
					Outline the catalytic removal of oxides of nitrogen in the exhaust gases from car engines		

49

Physical chemistry: Reaction kinetics

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment	
8	Reaction kinetics				Outline the catalytic role of atmospheric oxides of nitrogen in the oxidation of atmospheric sulfur dioxide		
					Outline the catalytic role of Fe ²⁺ Fe ³⁺ in the I^{-} / $S_{2}{O_{8}}^{2^{-}}$ reaction		
					Outline the catalytic role of enzymes, including the explanation of specificity using a simple lock and key model	Inhibition of enzymes is not required	

Inorganic chemistry: The Periodic Table: chemical periodicity

This topic illustrates the regular patterns in chemical and physical properties of the elements in the Periodic Table.

Syllabu sectior	IS Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
9	The Periodic Table/ chemical periodicity	Periodicity of physical properties of the elements across the third period (sodium to argon)	Describe qualitatively (and indicate the periodicity in) the variations in atomic radius, ionic radius, melting point and electrical conductivity of the elements (see the <i>Data Booklet</i>) Explain qualitatively the			
			variation in atomic radius and ionic radius			
			Interpret the variation in melting point and in electrical conductivity in terms of the presence of simple molecular, giant molecular or metallic bonding in the elements			
			Explain the variation in first ionisation energy (see the <i>Data Booklet</i>)			

Theme	Theme Topic	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
		Things you should be able to do	Comment	Things you should be able to do	Comment
The Periodic Table/ chemical periodicity	Periodicity of chemical properties of the elements in the third period	Describe the reactions, if any, of the elements with oxygen to give Na ₂ O; MgO; Al_2O_3 ; P_4O_{10} ; SO_2 ; SO ₃			
		Describe the reactions, if any, of the elements with chlorine to give NaCl; MgCl ₂ ; Al_2Cl_6 ; SiCl ₄ ; PCl ₅			
		Describe the reactions, if any, of the elements Na and Mg only with water			
		State and explain the variation in oxidation number of the oxides and chlorides in tertms of their vakence shell electrons	Oxides of sodium to sulfur only; chlorides of sodium to phosphorous only		
	The Periodic Table/ chemical periodicity	Theme Topic The Periodic Periodicity The Periodic properties of periodicity of chemical properties of the elements in the third period Image: Second Seco	Theme Topic Learners studying Things you should be able to do Things you should be able to do The Periodic Table/ chemical properties of periodicity Periodicity of chemical properties of the elements in the third period Describe the reactions, if any, of the elements with oxygen to give Na2O; MgO; AL2O3; P4O10; SO2; SO3 Image: Chemical period Describe the reactions, if any, of the elements with chlorine to give NaCl; MgCL2; AL2CL6; SiCL4; PCL5 Image: Chemical period Describe the reactions, if any, of the elements with chlorine to give NaCl; MgCL2; AL2CL6; SiCL4; PCL5 Image: Chemical period Describe the reactions, if any, of the elements with chlorine to give NaCl; MgCL2; AL2CL6; SiCL4; PCL5 Image: Chemical period Describe the reactions, if any, of the elements with chlorine to give NaCl; MgCL2; AL2CL6; SiCL4; PCL5 Image: Chemical period Describe the reactions, if any, of the elements Na and Mg only with water Image: Chemical period State and explain the variation in oxidation number of the oxides and chlorides in tertms of their vakence shell electrons	Theme Topic Learners studying AS Level Things you should be able to do Comment The Periodic Table/ chemical periodicity Periodicity of chemical properties of the elements in the third period Describe the reactions, if any, of the elements with oxygen to give Na ₂ O; MgO; AL ₂ O ₃ ; P ₄ O ₁₀ ; SO ₂ ; SO ₃ Image: Comment and the period Describe the reactions, if any, of the elements with chlorine to give NaCl; MgCl ₂ ; AL ₂ Cl ₆ ; SICl ₄ ; PCl ₅ Image: Comment and Mg only with water State and explain the variation in oxidation number of the oxides and chlorides in tertms of their vakence shell electrons Oxides of sodium to phosphorous only	Theme Topic Learners studying Ls Level Additional material studying the full studying the full studying the full studying the full The Periodic Table/ chemical periodicity Periodicity of chemical properties of the elements with oxygen to give Na ₂ O; MgO, A1,O ₃ : P ₄ O ₁₀ : SO ₃ : Comment Things you should be able to do The Periodic Table/ Describe the reactions, if any, of the elements with oxygen to give Na ₂ O; MgO, A1,O ₃ : P ₄ O ₁₀ : SO ₃ : SO ₃ SO ₃ Periodicity Describe the reactions, if any, of the elements with chlorine to give NaCl; MgCL ₂ : AL ₂ CL ₃ : SiCl ₄ : PCL ₆ So ₃ So ₃ State and Mg only with water Describe the reactions in and Mg only with water Soilar to give NaCl; MgCL ₂ : AL ₂ CL ₃ : SiCl ₄ : PCL ₆ Soilar to give NaCl ₂ : Al ₂ CL ₃ : SiCl ₄ : PCL ₆

Inorganic chemistry: The Periodic Table: chemical periodicity

Syllabus section	Theme	Торіс	Learners studying	AS Level	<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
9	The Periodic Table/ chemical periodicity		Describe the reactions of the oxides with water	Treatment of peroxi- des and superox- ides is not required		
			Describe and explain the acid/base behaviour of oxides and hydroxides, including, where relevant, amphoteric behaviour in reaction with bases (sodium hydroxide only) and acids		_	
			Describe and explain the reactions of the chlorides with water			
			Interpret the variations and trends in chemical properties in terms of bonding and electronegativity			
			Suggest the types of chemical bonding present in chlorides and oxides from observations of their chemical and physical properties			

Inorganic chemistry: The Periodic Table: chemical periodicity

σ

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
9	The Periodic Table/ chemical periodicity		Predict the characteristic properties of an element in a given group by using knowledge of chemical periodicity			
			Deduce the nature, possible position in the Periodic Table, and identity of unknown elements from given information of physical and chemical properties			

_

Inorganic chemistry: The Periodic Table: chemical periodicity

The physical and chemical properties of the elements of Group 2 (the alkaline Earth metals) are introduced in this topic.

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for lea the full A Leve	rners studying el
			Things you should be able to do	Comment	Things you should be able to do	Comment
10 Gro	Group 2	Similarities and trends in the properties of the Group 2 metals magnesium to barium and their compounds	Describe the reactions of the elements with: oxygen, water and dilute acids			
			Describe the behaviour of the oxides, hydroxides and carbonates with water and with dilute acids			
			Describe the thermal decomposition of the nitrates and carbonates		Interpret and explain qualitatively the trend in the thermal stability of the nitrates and carbonates in terms of the charge density of the cation and the polarisability of the large anion	
			Interpret and make predictions from the trends in physical and chemical properties of the elements and their compounds			

55

Syllabus section	Theme	neme Topic	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
10	Group 2		State the variation in the solubilities of the hydroxides and sulfates			
					Interpret and explain qualitatively the variation in solubility of the hydroxides and sulfates in terms of relative magnitudes of the enthalpy change of hydration and the corresponding lattice energy	
		Some uses of Group 2 compounds	Describe and explain the use of calcium hydroxide and calcium carbonate (powdered limestone) in agriculture			

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
11	Group 17	Characteristic physical properties	Describe the colours of chlorine, bromine and iodine			
			Describe the trend in volatility of chlorine, bromine and iodine			
			Interpret the volatility of the elements chlorine, bromine and iodine, in terms of van der Waals' forces			
		The chemical properties of the elements and their hydrides	Describe the relative reactivity of the elements chlorine, bromine and iodine as oxidising agents			
			Describe and explain the reactions of the elements with hydrogen			
			Describe and explain the relative thermal stabilities of the hydrides.			

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
11	Group 17		Interpret these relative stabilities in terms of bond energies			
		Some reactions of the halide ions	Describe and explain the reactions of halide ions with aqueous silver ions followed by aqueous ammonia			
			Describe and explain the reactions of halide ions with concentrated sulfuric acid			

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material fo studying the full A	or learners A Level
			Things you should be able to do	Comment	Things you should be able to do	Comment
11	Group 17	The reactions of chlorine with aqueous sodium hydroxide	Describe and interpret in terms of changes of oxidation number the reaction of chlorine with cold, and with hot, aqueous sodium hydroxide			
		Some important uses of the halogens and of halogen compounds	Explain the use of chlorine in water purification			
			State the industrial importance and environmental significance of the halogens and their compounds, including: bleach, PVC, halogenated hydrocarbons as solvents, as refrigerants, and in aerosols.	See also content on uses in Section 16, Halogen derivatives		

The physical and chemical properties of the transition elements are introduced in this topic.

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learn the full A Level	ers studying
			Things you should be able to do	Comment	Things you should be able to do	Comment
12 An introdu to the chemis of tran elemen	An introduction to the chemistry of transition	General physical properties of the elements (titanium to copper)			Explain the meaning of <i>transition element</i> , in terms of d-block elements forming one or more stable ions with incomplete d orbitals	
	elements				Sketch the shape of a d orbital	
					State the electronic configuration of the first row transition elements and of their ions	
					Contrast, qualitatively, the melting point and density of the transition elements with those of calcium as a typical s-block element	
					Describe the tendency of transition elements to have variable oxidation states	
					Predict from a given electronic configuration, the likely oxidation states of a transition element	

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learr the full A Level	ers studying
			Things you should be able to do	Comment	Things you should be able to do	Comment
12	An introduction to the chemistry of transition elements	General characteristic chemical properties of the first set of transition elements, titatinium to copper			Describe and explain the reactions of transition elements with ligands to form complexes, including the complexes of copper(II) and cobalt (II) ions with water, and ammonia molecules and hydroxide and chloride ions	
					Define a <i>ligand</i> as a species that has a lone pair of electrons and can form a dative bond to a central metal atom or ion including monodentate, bidentate and polydentate ligands.	
					Define a <i>complex</i> as a molecule or ion formed by a central metal atom or ion surrounded by one or more ligands.	
					Describe transition metal complexes as linear, octahedral, tetrahedral, or square planar	

o the chemistry o	f trans
Learners studying A	S Level
Things you should be able to do	Com

Comment

Inorganic chemistry: An introduction to the c stry of transition elements

Topic

Syllabus

section

12

Theme

An

to the

introduction

chemistry

elements

of transition

Additional material for learners studying

the full A Level

Comment

Things you should be able

State what is meant by

predict the formula and

given the metal ion, its

ordination number

charge of a complex ion,

charge, the ligand and its co-

co-ordination number and

to do

Syllabus Theme section		Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
12	An introduction to the chemistry of transition elements				Explain qualitatively that ligand exchange may occur including the complexes of copper(II) ions with water and ammonia molecules and hydroxide and chloride ions	
					Describe and explain the use of Fe ³⁺ /Fe ²⁺ , MnO ₄ ⁻ /Mn ²⁺ and $Cr_2O_7^{2-}/Cr^{3+}$ as examples of redox systems	See also content on redox equations in Electro- chemistry (Section 6) Standard electrode potentials
					Predict, using <i>E°</i> values, the likelihood of redox reactions	
		Colour of complexes			Describe the splitting of degenerate d orbitals into two energy levels in octahedral and tetrahedral complexes	
					Explain the origin of colour in transition element complexes (light energy absorbed as an electron moves between two non- degenerate d orbitals	

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studyin the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
12	An introduction to the chemistry of transition elements				Describe qualitatively the effect of different ligands on absorption and therefore colour: eg copper(II) ions with water, hydroxide, ammonia and chloride ligands	
					Apply these ideas of ligands and complexes to other metals, given information.	
		Stereoisomerism in transition element complexes			describe the types of stereoisomerism shown by complexes, including those associated with bidentate ligands: (i) cis-trans isomerism, e.g. cis- and trans-platin Pt(NH ₃) ₂ Cl ₂ (ii) optical isomerism, e.g. [Ni(NH ₂ CH ₂ CH ₂ NH ₂) ₃] ²⁺	
					describe the use of cisplatin as an anticancer drug and its action by binding to DNA in cancer cells, preventing cell division	

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learr the full A Level	ners studying
			Things you should be able to do	Comment	Things you should be able to do	Comment
12 An introduction to the chemistry of transition elements	An introduction to the	Stability constants, K _{stab}			describe and explain ligand exchanges in terms of competing equilibria)	See also Equilibria (Section 7)
	of transition elements				state that the stability constant, K _{stab} , of a complex ion is the equilibrium constant for the formation of the complex ion in a solvent from its constituent ions or molecules	
					deduce expressions for the stability constant of a ligand substitution	
					explain ligand exchange in terms of stability constants, K _{stab} , and understand that a large K _{stab} is due to the formation of a stable complex ion	

66 Cambridge International AS and A Level Chemistry 9701

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
13	Nitrogen and sulfur	Nitrogen: Its unreactivity	Explain the lack of reactivity of nitrogen			
		Ammonia, ammonium ion, nitric acid and fertilisers	Describe and explain the basicity of ammonia	See also content in Equilibria (Section 7), Ionic equilibria		
			Describe and explain the formation (by an acid-base reaction) and the structure of the ammonium ion			
			Describe the displacement of ammonia from its salts			
			State the industrial importance of ammonia and nitrogen compounds derived from ammonia			

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material studying the full	for learners A Level
			Things you should be able to do	Comment	Things you should be able to do	Comment
13	Nitrogen and sulfur	Nitrogen: The environmental impact of nitrogen oxides and nitrates	State and explain the environmental consequences of the uncontrolled use of nitrate fertilisers			
			State and explain the natural and man-made occurrence of oxides of nitrogen			
			State and explain the catalytic removal of oxides of nitrogen from car exhaust gases			
			Explain why atmospheric oxides of nitrogen are pollutants, including their catalytic role in the oxidation of atmospheric sulfur dioxide	See also content in Reaction kinetics (Section 8), Homo- geneous and hetero- geneous catalysts including enzymes		

Inorganic chemistry: Nitrogen and sulfur

67

Syllabus section	Theme	me Topic	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
13	Nitrogen and sulfur	Sulfur: The formation of atmospheric sulfur dioxide, its role in acid rain	Describe the formation of atmospheric sulfur dioxide from the combustion of sulfur contaminated fossil fuels			
			State the role of sulfur dioxide in the formation of acid rain and describe the main environmental consequences of acid rain			

Organic chemistry: Introductory topics

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment

Although there are features of organic chemistry topics that are distinctive, it is intended that you make cross-references with other themes/topics in the syllabus. When describing preparative reactions, you will be expected to guote the reagents, e.g. aqueous NaOH, the essential practical conditions, e.g. reflux, and the identity of each of the major products. Detailed knowledge of practical procedures are not required: however, you may be expected to suggest (from your knowledge of the reagents, essential conditions and products) what steps may be needed to purify / extract a required product from the reaction mixture. In equations for organic redox reactions, the symbols [O] and [H] are acceptable.

In each of the sections below, you will be expected to be able to predict the reaction products of a given compound in reactions that are chemically similar to those specified.

70 Cambridge International AS and A Level Chemistry 9701

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
14	An introduction to organic chemistry	Molecular, structural and empirical formulae	Write structural formulae e.g. CH ₃ CH ₂ CH ₂ OH for propan-1-ol and not C ₃ H ₇ OH.	For more details, see syllabus Section 5.4		
			Write displayed formulae showing the relative placing of all atoms and the number of bonds between all the atoms	The hexagon symbol for cyclohexane is acceptable		
			Write skeletal formulae, derived from the displayed formulae, showing the carbon- carbon bonds in the carbon skeleton and the associated functional groups. Skeletal formulae must be unambiguous.	For more details, see syllabus Section 5.4		
			Draw optical isomers giving three- dimensional structures according to the convention used	For more details, see syllabus Section 5.4		
Syllabus section	Theme	Торіс	Learners studyi	Learners studying AS Level		arners studying vel
------------------	---	---	---	---	---	--
			Things you should be able to do	Comment	Things you should be able to do	Comment
14	An introduction to organic chemistry	Functional groups and the naming of organic compounds	Interpret and use the general, structural, displayed and skeletal formulae of alkanes and alkenes	Knowledge of benzene or its compounds is not required for AS	Interpret and use the general, structural, displayed and skeletal formulae of arenes	You will be expected to recognise the shape of the benzene ring The circle- in-a-hexagon convention for representing the aromatic ring is preferred
			Interpret and use the general, structural, displayed and skeletal formulae of halogenoalkanes		Interpret and use the general, structural, displayed and skeletal formulae halogenoarenes	
			Interpret and use the general, structural, displayed and skeletal formulae of alcohols (including primary, secondary and tertiary)		Interpret, and use the general, structural, displayed and skeletal formulae of phenols	

Section 4: What you need to know

71

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for lea the full A Lev	arners studying /el
			Things you should be able to do	Comment	Things you should be able to do	Comment
14	An introduction to organic chemistry		Interpret and use the general, structural, displayed and skeletal formulae of aldehydes and ketones			
			Interpret and use the general, structural, displayed and skeletal formulae of carboxylic acids and esters		Interpret and use the general, structural, displayed and skeletal formulae of acyl chlorides	
			Interpret and use the general, structural, displayed and skeletal formulae of amines (primary only) and nitriles		Interpret and use the general, structural, displayed and skeletal formulae of amides and amino acids	
			Understand and use systematic nomenclature of simple aliphatic organic molecules with functional groups given above with up to six carbon atoms.	Six plus six carbon atoms for esters and amides, straight chains only)	Understand and use systematic nomenclature of simple aromatic molecules with one benzene ring and one or more simple substituents, for example 3-nitrobenzoic acid, 2,4,6-tribromophenol	

Syllabus section	Theme	Торіс	Learners studyi	Learners studying AS Level		arners studying vel
			Things you should be able to do	Comment	Things you should be able to do	Comment
14	An introduction to organic chemistry		Deduce the possible isomers for an organic molecule of known molecular formula			
		Characteristic organic reactions	Interpret and use the term: functional group			
			Interpret and use the terms: homolytic and heterolytic fission, free radical, initiation, propagation and termination			
			Interpret and use the terms: nucleophile, electrophile, addition, substitution, elimination, hydrolysis and condensation			

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for lea the full A Lev	arners studying /el
			Things you should be able to do	Comment	Things you should be able to do	Comment
14	An introduction to organic chemistry		Interpret and use the terms: oxidation and reduction	In equations for organic redox reactions, the symbols [O] and [H] are acceptable		
		Shapes of organic molecules; σ and π bonds	Describe the shapes of, and bond angles in, the ethane and ethene molecules		Describe the shape of, and bond angles in, the benzene molecule	
			Predict the shapes of, and bond angles in, other related molecules			
			Explain the shapes of, and bond angles in, the ethane and ethene molecules in terms of σ and π carbon-carbon bonds		Explain the shape of, and bond angles in, the benzene molecule in terms of σ and π carbon- carbon bonds	

Syllabus section	Theme	Торіс	Learners studyi	ng AS Level	<u>Additional</u> material for learners studyin the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
14	An introduction to organic chemistry	lsomerism: structural; cis-transn and stereo- isomerism	Describe structural isomerism and its division into chain, positional, and functional group isomerism			
			Describe stereoisomerism and its division into geometrical (cis-trans) and optical isomerism	Use of E, Z nomenclature is acceptable but is <i>not</i> required		
			Describe cis-trans isomerism in alkenes, and explain its origin in terms of restricted rotation due to the presence of π bonds			
			Explain what is meant by a chiral centre and that such a centre gives rise to optical isomerism	You should appreciate that compounds can contain more than one chiral centre, but knowledge of meso compounds, or nomenclature such as <i>diastereoisomers</i> is <i>not</i> required.		

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
14	An introduction to organic chemistry		Identify chiral centres and/or cis-trans isomerism in a molecule of given structural formula			
			Deduce the molecular formula of a compound from its structural, displayed, or skeletal formula.			

Compounds containing only carbon and hydrogen are called hydrocarbons. This class of compound can be sub-divided into alkanes, alkenes and arenes.

Syllabus section	/llabus Theme Topic		Learners studying /	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment		
15	Hydrocarbons	Alkanes	Understand the general unreactivity of alkanes, including towards polar reagents					
			Describe the chemistry of alkanes: combustion, substitution by chlorine and substitution by bromine	Exemplified by ethane				
			Describe the mechanism of free- radical substitution at methyl groups with particular reference to the initiation, propagation and termination reactions					
			Explain the use of crude oil as a source of aliphatic and aromatic hydrocarbons					

Syllabus section	Theme	Торіс	Learners studying ,	AS Level	<u>Additional</u> material for le full A Le	earners studying the vel
			Things you should be able to do	Comment	Things you should be able to do	Comment
15	Hydrocarbons		Suggest how 'cracking' can be used to obtain more useful alkanes and alkenes of lower <i>M</i> _r from larger hydrocarbon molecules			
		Alkenes	Describe the chemistry of alkenes: addition of hydrogen, steam, hydrogen halides and halogens	Exemplified by ethene and propene		
			Describe Markovnikov addition of asymmetric electrophiles to propene			
			Describe the chemistry of alkenes: oxidation by cold, dilute acidified manganate(VII) ions to form the diol			

Organic chemistry and analysis: Hydrocarbons

	Or	ganic	chemistry	and analys	sis: Hydrocarbons	
--	----	-------	-----------	------------	-------------------	--

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
15	Hydrocarbons		Describe the chemistry of alkenes: oxidation by hot, concentrated acidified manganate(VII) ions rupturing the carbon-to-carbon double bond, determining the position of alkene linkages C=C in larger molecules			
			Describe the chemistry of alkenes: polymerisation	See also polymer- isation		
			Describe the mechanism of electrophilic addition in alkenes, using bromine/ ethene and HBr/propene as examples			
			Describe and explain the inductive effects of alkyl groups on the stability of cations formed during electrophilic addition			

79

Syllabus section	Theme	Торіс	Learners studying <i>i</i>	AS Level	<u>Additional</u> material for le full A Le	arners studying the vel
			Things you should be able to do	Comment	Things you should be able to do	Comment
15	Hydrocarbons		Describe the characteristics of addition polymerisation as exemplified by poly(ethene) and PVC			
			Deduce the repeat unit of an addition polymer obtained from a given monomer			
			Identify the monomer(s) present in a given section of an addition polymer molecule			
			Recognise the difficulty of the disposal of poly(alkene)s, i.e. non- biodegradability and harmful combustion products			

Organic chemistry and analysis: Hydrocarbons

Syllabus section	ibus Theme Topic		Learners studying A	AS Level	<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
15	Hydrocarbons	Hydrocarbons as fueld	Describe and explain how the combustion reactions of alkanes led to their use as fuels in the home, industry and transport			
		Arenes			Describe the chemistry of arenes: substitution reactions with chlorine and with bromine	Exemplified by benzene and methylbenzene
					Describe the chemistry of arenes: nitration	
					Describe the chemistry of arenes: Friedel-Crafts alkylation and acylation	
					Describe the chemistry of arenes: 'complete' oxidation of the side- chain to give a benzoic acid	
					Describe the chemistry of arenes: hydrogenation of the benzene ring to form a cyclohexane ring	

Section 4: What you need to know

Organic chem	histry and	analysis [.]	Hydrocarbons
Organic cherr	iisti y ahu	anarysis.	Tyulucalbulls

Syllabus section	Theme	Торіс	Learners studying <i>A</i>	AS Level	<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
15	Hydrocarbons				Describe the mechanism of electrophilic substitution in arenes, using the mononitration and bromination of benzene as examples	
					Suggest the mechanism of other electrophilic substitution reactions, given data.	
					Describe the effect of the delocalisation of electrons in the electrophilic substitution of arenes	
					Interpret the difference in reactivity between benzene and chlorobenzene	
					Predict whether halogenation will occur in the side-chain or aromatic nucleus in arenes depending on reaction conditions	
					Apply the knowledge of positions of substitution in the electrophilic substitution of arenes	

Organic chemistry and analysis: Hydrocarbons

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
15	Hydrocarbons		Recognise the environmental consequences of carbon monoxide, oxides of nitrogen and unburnt hydrocarbons arising from the internal combustion engine			
			Recognise the environmental consequences of the catalytic removal of pollutant gases			
			Recognise the environmental consequences of gases that contribute to the enhanced greenhouse effect			
			Outline the use of infra- red spectroscopy in monitoring air pollution	See also content on infra-red spectroscopy in Analytical techniques		

Section 4: What you need to know

Syllabus section	Theme	Торіс	Learners studying	g AS Level	<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
16	Halogen derivatives	Halogenoalkanes and halogenoarenes	Recall the chemistry of halogenoalkanes as exemplified by the following nucleophilic substitution reactions of bromoethane: hydrolysis; formation of nitriles; formation of primary amines by reaction with ammonia			
			Recall the chemistry of halogenoalkanes as exemplified by the elimination of hydrogen bromide from 2-bromopropane			
			Describe the mechanism of nucleophilic substitution in halogenoalkanes			
			Describe S _N 1 and S _N 2 mechanisms including the inductive effects of alkyl groups	See also content on electrophilic effect of alkyl groups in Hydrocarbons (Section 15), Alkenes		

Organic chemistry and analysis: Halogen derivatives

Syllabus section	Theme	Торіс	Learners studying	g AS Level	<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
16 Halog and derive	Halogen and derivatives		Recall that primary halogenoalkanes tend to react via the S _N 2 mechanism; tertiary halogenoalkanes via the S _N 1 mechanism and secondary halogenoalkanes by a mixture of the two, depending on structure			
		Relative strength of the C-Hal bond	Interpret the different reactivities of halogenoalkanes with particular reference to hydrolysis and the relative strengths of C-Hal bonds		Interpret the different reactivities of halogenoalkanes and chlorobenzene with particular reference to hydrolysis and the relative strengths of C-Hal bonds.	
			Explain the uses of fluoroalkanes and fluorohalogenoalkanes in terms of their relative chemical inertness			
			Recognise the concern about the effect of chlorofluoroalkanes on the ozone layer			

Organic chemistry and analysis: Halogen derivatives

00 00 00

Organic chemistry and analysis: Hydroxy compounds

This topic introduces the chemistry of a versatile class of organic compounds, hydroxyl compounds, which contain a –OH group.

Syllabus section	Theme	eme Topic	Learners studying <i>i</i>	AS Level	<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
17	Hydroxy compounds	Alcohols	Recall the chemistry of alcohols, exemplified by ethanol: combustion	(exemplified by ethanol)		
			Recall the chemistry of alcohols, exemplified by ethanol: substitution to give halogenoalkanes			
			Recall the chemistry of alcohols, exemplified by ethanol: reaction with sodium			
			Recall the chemistry of alcohols, exemplified by ethanol: oxidation to carbonyl compounds and carboxylic acids			
			Recall the chemistry of alcohols, exemplified by ethanol: dehydration to alkenes			

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
17 Hydr com	Hydroxy compounds		Recall the chemistry of alcohols, exemplified by ethanol: ester formation by esterification with carboxylic acids		Recall the chemistry of alcohols, exemplified by ethanol: formation of esters by acylation with acyl chlorides using ethyl ethanoate and phenyl benzoate as examples	
			Classify hydroxy compounds into primary, secondary and tertiary alcohols			
			Suggest characteristic distinguishing reactions, e.g. mild oxidation			
			Deduce the presence of a CH ₃ CH(OH)- group in an alcohol from its reaction with alkaline aqueous iodine to form tri-iodomethane			
		Phenol			Recall the chemistry of phenol, as exemplified by the reaction with bases	

Organic chemistry and analysis: Hydroxy compounds

Syllabus section	Theme Topic Learners studying AS Level		AS Level	<u>Additional</u> material for learners studying the full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment
17	Hydroxy compounds				Recall the chemistry of phenol, as exemplified by the reaction with sodium	
					Recall the chemistry of phenol, as exemplified by the nitration of and bromination of the aromatic ring	
					Recall the chemistry of phenol, as exemplified by the reaction with diazonium salts	See also content on formation of phenol in Nitrogen compounds (Section 20), Primary amines
					Describe and explain the relative acidities of water, phenol and ethanol	

Organic chemistry and analysis: Hydroxy compounds

Organic chemistry and analysis: Carbonyl compounds

This topic introduces the chemistry of the carbonyl compounds, aldehydes and ketones.

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
18	Carbonyl compounds	Aldehydes Ketones	Describe the formation of aldehydes and ketones from primary and secondary alcohols respectively using Cr ₂ O ₇ ²⁻ / H ⁺			
			Describe the reduction of aldehydes and ketones using NaBH ₄ or LiAIH ₄			
			Describe the mechanism of the nucleophilic addition reactions of hydrogen cyanide with aldehydes and ketones			
				Describe the use of 2,4-dinitrophenylhydrazine reagent (2,4-DNPH) to detect the presence of carbonyl compounds		

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
18	Carbonyl compounds		Deduce the nature (aldehyde or ketone) of an unknown carbonyl compound from the results of simple tests (i.e. Fehling's and Tollens' reagents; ease of oxidation)			
			Describe the reaction of CH ₃ CO ⁻ compounds with alkaline aqueous iodine to give tri-iodomethane			

Organic chemistry and analysis: Carbonyl compounds

Organic chemistry and analysis: Carboxylic acids and derivatives

This topic introduces the chemistry of carboxylic acids and their derivatives.

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
19	Carboxylic acids and derivatives	Carboxylic acids	Describe the formation of carboxylic acids from alcohols, aldehydes and nitriles			
			Describe the reactions of carboxylic acids in the formation of salts, using reactive metals, alkalis, or carbonates		Describe the reactions of carboxylic acids in the formation of acyl chlorides	
			Describe the reactions of carboxylic acids in the formation of esters			
		Describe of carbo formatic use of L	Describe the reactions of carboxylic acids in the formation of alcohols, by use of LiA <i>l</i> H ₄		Recognise that some carboxylic acids can be further oxidised: the oxidation of methanoic acid, HCO ₂ H, with Fehling's and Tollens' reagents	

9

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for the full <i>i</i>	or learners studying A Level
			Things you should be able to do	Comment	Things you should be able to do	Comment
19	Carboxylic acids and derivatives				Recognise that some carboxylic acids can be further oxidised: the oxidation of ethanedioic acid, HO ₂ CCO ₂ H, with warm acidified manganate(VII)	
					Explain the relative acidities of carboxylic acids, phenols and alcohols	
					Use the concept of electronegativity to explain the acidities of chlorine- substituted ethanoic acids	
		Acyl chlorides			Describe the hydrolysis of acyl chlorides	Exemplified by ethanoyl chloride
					Describe the reactions of acyl chlorides with alcohols, phenols, ammonia and primary amines	

Organic chemistry and analysis: Carboxylic acids and derivatives

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment	
19 Carboxylic acids and derivatives	Carboxylic acids and derivatives				Explain the relative ease of hydrolysis of acyl chlorides, alkyl chlorides and aryl chlorides including the condensation (addition-elimination) mechanism for the hydrolysis of acyl chlorides		
		Esters	Describe the formation of esters from carboxylic acids using ethyl ethanoate as an example	Exemplified by ethyl ethanoate	Describe the formation of esters from acyl chlorides using phenyl benzoate as an example	Exemplified by phenyl benzoate	
			Describe the acid and base hydrolysis of esters				
			State the major commercial uses of esters e.g. solvents; perfumes; flavourings				

Organic chemistry and analysis: Carboxylic acids and derivatives

Organic chemistry and analysis: Nitrogen compounds

Many biological molecules contain nitrogen. This topic introduces the chemistry of a variety of organic compounds that contain nitrogen.

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment	
20 Nitrogen compound	Nitrogen compounds	Primary amines			Describe the formation of alkyl amines by the reaction of ammonia with halogenoalkanes.	Exemplified by ethylamine	
					Describe the formation of alkyl amines by the reduction of amides with LiA <i>I</i> H ₄		
					Describe the formation of alkyl amines by the reduction of nitriles with LiA <i>t</i> H ₄ or H ₂ /Ni		
					Describe the formation of phenylamine by the reduction of nitrobenzene by Sn/conc HC <i>l</i>		
					Describe and explain the basicity of amines		
					Explain the relative basicities of ammonia, ethylamine and phenylamine in terms of their structures		

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learn full A Level	ners studying the
			Things you should be able to do	Comment	Things you should be able to do	Comment
20	Nitrogen compounds				Describe the reaction of phenylamine with aqueous bromine	
					Describe the reaction of phenylamine with nitrous acid to give the diazonium salt and phenol	
					Describe the coupling of benzenediazonium chloride and phenol and the use of similar reactions in the formation of dyestuff	
		Amides			Describe the formation of amides from the reaction between RNH ₂ and R'COC <i>1</i>	Exemplified by ethanamide
					Recognise that amides are neutral	
					Describe amide hydrolysis on treatment with aqueous alkali or acid	
					Describe the reduction of amides with LiA <i>l</i> H ₄	

Organic chemistry and analysis: Nitrogen compounds

95

Syllabus section	Syllabus Theme section	Торіс	Learners studyir	ng AS Level	<u>Additional</u> material for learners studying the full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment	
20	Nitrogen compounds	Amino acids			Describe the acid/base properties of amino acids and the formation of zwitterions		
					Describe the formation of peptide bonds between amino acids to give di- and tri-peptides		
					Describe simply the process of electrophoresis and the effect of pH, using peptides and amino acids as examples		

Organic chemistry and analysis: Nitrogen compounds

Organic chemistry and analysis: Polymerisation

This topic illustrates how small molecules join together to form polymers and how their properties are useful in everyday life.

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for lear the full A Leve	ners studying I
			Things you should be able to do	Comment	Things you should be able to do	Comment
21	Polymerisation	Addition				
	Condensation polymerisation			Describe the characteristics of condensation polymerisation in polyesters as exemplified by Terylene		
					Describe the characteristics of condensation polymerisation in polyamides as exemplified by polypeptides, proteins, nylon 6, nylon 6,6 and <i>Kevlar</i>	
					Deduce the repeat unit of a condensation polymer obtained from a given monomer or pair of monomers	
					ldentify the monomer(s) present in a given section of a condensation polymer molecule	

Section 4: What you need to know

Syllabus section	Theme	Торіс	Learners studying	AS Level	<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
21	Polymerisation	Predicting the type of polymerisation			Describe the formation of polyesters and polyamides	
					Predict the type of polymerisation reaction for a given monomer or pair of monomers	
					Deduce the type of polymerisation reaction which produces a given section of a polymer molecule	
		Biodegradable polymers			Recognise that polyalkenes are chemically inert and can therefore be difficult to biodegrade	
					Recognise that a number of polymers can be degraded by the action of light	
					Recognise that polyesters and polyamides are biodegradable by hydrolysis	
					Describe the hydrolysis of proteins	

Organic chemistry and analysis: Polymerisation

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for lea the full A Leve	rners studying el
			Things you should be able to do	Comment	Things you should be able to do	Comment
21	Polymerisation	Properties of polymers			Discuss the properties and structures of polymers based on their methods of formation	Both addition and condensation should be considered
					Discuss how the presence of side-chains and intermolecular forces affect the properties of polymeric materials	For example, polyalkenes, PTFE (<i>Teflon,</i> <i>Kevlar</i>)
					Explain the significance of hydrogen-bonding in the pairing of bases in DNA in relation to the replication of genetic information	
					Distinguish between the primary, secondary and tertiary structure of proteins	
					State that the secondary structures found in proteins are α -helix and β -pleated sheet	

66

Syllabus section	Theme	Торіс	Topic Learners studying AS		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
21	Polymerisation				Explain the stabilisation of secondary structure by hydrogen bonding between C=O and N-H groups in the backbone	
					Explain the stabilisation of tertiary structure by R-group interactions	
					Describe how polymers have been designed to act as non-solvent based adhesives, e.g. epoxy resins and superglues	
					Describe how polymers have been designed to act as conducting polymers, e.g. polyacetylene	

Organic chemistry and analysis: Polymerisation

Analytical techniques are important tools for investigating organic compounds.

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment	
22 Analyti technic	Analytical techniques	Chromatography			Explain and use the terms R _f value in thin layer chromatography and retention time in gas/ liquid chromatography from chromatograms		
					Interpret gas/liquid chromatograms in terms of the percentage composition of a mixture		
		Infra-red spectroscopy	Analyse an infra- red spectrum of a simple molecule to identify functional groups	See the Data Booklet for functional groups required			
			Mass spectrometry		Deduce the molecular mass of an organic molecule from the molecular ion peak in a mass spectrumdeduce the number of carbon atoms in a compound using the M+1 peak		

Syllabus section	Theme	Торіс	Learners studyin	ig AS Level	<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
22 Analytical techniques	Analytical techniques				Deduce the presence of bromine and chlorine atoms in a compound using the M+2 peak	
					Suggest the identity of molecules formed by simple fragmentation in a given mass spectrum	
		Carbon-13 NMR spectroscopy			Analyse a carbon-13 NMR spectrum of a simple molecule to deduce: (i) the different environments	
					(ii) the carbon atoms present(ii) the possible structures for the molecule	
					Predict the number of peaks in a carbon-13 NMR spectrum for a given molecule	

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying t full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
22	Analytical techniques	Proton (1H) NMR spectroscopy			 Analyse and interpret a proton NMR spectrum of a simple molecule to deduce: (i) the different types of proton present using chemical shift values (ii) the relative numbers of each type of proton present from relative peak areas (iii) the number of non-equivalent protons adjacent to a given proton from the splitting pattern, using the n + 1 rule (iv) the possible structures for the molecule 	
					Predict the chemical shifts and splitting patterns of the protons in a given molecule	
					Describe the use of tetramethylsilane, TMS, as the standard for chemical shift measurements	

Syllabus section	Theme	Торіс	c Learners studying AS		el <u>Additional</u> material for learners stud full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
22	Analytical techniques				State the need for deuterated solvents, e.g. CDCl ₃ , when obtaining an NMR spectrum	
					Describe the identification of O–H and N–H protons by proton exchange using D ₂ O	

Organic chemistry and analysis: Organic synthesis

This topic introduces the strategies used in synthesis of organic molecules.

Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying the full A Level	
			Things you should be able to do	Comment	Things you should be able to do	Comment
23	Organic synthesis	Synthesis of chiral drug molecules			State that most chiral drugs extracted from natural sources often contain only a single optical isomer	
					State reasons why the synthetic preparation of drug molecules often requires the production of a single optical isomer, e.g. better therapeutic activity, fewer side effects	
		Synthetic routes			For an organic molecule containing several functional groups: (i) identify organic functional groups using the reactions in the syllabus (ii) predict properties and reactions	
					Devise multi-stage synthetic routes for preparing organic molecules using the reactions in the syllabus	

Organic chemistry and analysis: Organic synthesis							
Syllabus section	Theme	Торіс	Learners studying AS Level		<u>Additional</u> material for learners studying th full A Level		
			Things you should be able to do	Comment	Things you should be able to do	Comment	
23	Organic synthesis				Analyse a given synthetic route in terms of type of reaction and reagents used for each step of it, and possible by-products		

Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom tel: +44 1223 553554 fax: +44 1223 553558 email: info@cie.org.uk www.cie.org.uk